(Michel Negynas dans Contrepoints du 13 Mars 2023)
Affirmer que le nucléaire et les énergies intermittentes sont complémentaires est une hérésie. Pire, elles sont un facteur d’augmentation de coût et d’instabilité pour les centrales nucléaires.
La réalité reprend toujours ses droits. La guerre en Ukraine, et (enfin) la prise de conscience de la nécessité d’être souverain en matière d’énergie gagne les media et le grand public.
Or, actuellement, seul le nucléaire peut contribuer largement à cette indépendance. Les énergies intermittentes ont besoin d’un service de secours en cas de nuit sans vent. Ce ne peut être que le gaz comme nous allons le montrer. Ainsi, affirmer que le nucléaire et les énergies intermittentes sont complémentaires est une hérésie. Pire, elles sont un facteur d’augmentation de coût et d’instabilité pour les centrales nucléaires.
En France, les énergies intermittentes sont un alibi à la reprise du nucléaire
Les États non écolo-schizophrènes (Suède, Finlande, Pologne, Pays-Bas, France, Italie peut être…) ont admis qu’il fallait relancer le nucléaire. On approche de la raison, c’est bien. Mais pour se faire pardonner (en France particulièrement), les autorités politiques en rajoutent sur les éoliennes et les panneaux solaires : c’est du « en même temps » pur jus. Nos édiles pensent même que régler la question du retard pris dans le développement du nucléaire (dont ils ont tous été plus ou moins les instigateurs délibérés) se fera par une accélération des énergies renouvelables. Ils montrent par là qu’ils n’ont rien compris au dimensionnement d’un réseau électrique, qui se fait en capacité pilotable (les kW) et pas en énergie (les kWh). Il y aura toujours des nuits sans vent. Le soleil et Éole ne sont pas pilotables.
Hormis ce gage donné aux écologistes pour faire avaler un volteface salutaire, l’éolien et le solaire sont- ils utiles dans un réseau à base de nucléaire, sont-ils même « complémentaires » comme on nous le répète à l’envi ?
Les énergies intermittentes sont-elles utiles ?
Dès l’instant où on admet (ce qui est vérifiable très facilement sur les sites nationaux de suivi des productions électriques) qu’il peut y avoir des nuits sans vent sur quasiment toute l’Europe, les éoliennes et le solaire apparaissent comme des investissements redondants sur le réseau, puisqu’il faut assurer la sécurité par des centrales pilotables. Dans ces conditions, qu’apportent-ils ?
Sur le plan environnemental
Rien. La production du silicium est au moins aussi polluante que la production du minerai d’uranium. Et on démontre qu’il faut davantage de ressources en matériaux au kWh produit pour l’éolien que pour le nucléaire. Le bilan carbone total est également meilleur pour le nucléaire que pour les ENR intermittentes.
Sur le plan économique
Il faut comparer le coût complet du kWh éolien et solaire au coût marginal (en gros le coût d’exploitation variable) des moyens pilotables, puisque de toute façon il faut construire ceux-ci. Pour l’hydraulique et le nucléaire, ces coûts variables sont très faibles, bien inférieurs au coût complet des ENR. Il n’y a donc pas non plus d’intérêt économique.
Sur le plan de la souveraineté
Force est de constater que la France n’a pas été capable de construire une filière nationale. Les éoliennes sont construites par des Américains (depuis peu partiellement en France), des Espagnols, des Allemands et des Danois. Le silicium est importé de Chine. Certes, l’uranium est importé, mais d’une variété de pays, ce qui le sécurise. De plus, il est facile d’avoir un stock de dizaines d’années, sans parler de la filière surrégénératrice, que la France a mise au point avec 30 ans d’avance. Et même si nous sous-traitons certaines opérations, nous avons le potentiel technique pour les rapatrier.
On ne voit donc pas en quoi les éoliennes et le solaire nous sont utiles.
Les énergies intermittentes nuisent gravement à la conduite du réseau
Elles varient, à long, moyen et court terme. La variation à l’échelle du jour, voire de l’heure, est très pénalisante. Il faut des centrales pilotables prêtes à intervenir en urgence. L’hydraulique peut jouer ce rôle en deçà de 10GW environ en France. Mais elle n’est pas suffisante au-delà d’une proportion d’intermittents dans le réseau. Et il faut déjà assurer ce suivi rapide pour les fluctuations de consommation. Tout se passe comme si ces fluctuations rendaient encore plus variable la consommation.
La situation est particulièrement critique en été : même si la pointe de midi coïncide avec le maximum solaire, elle est loin de gommer la variabilité. Imaginons (comme c’est prévu) que nous ayons 60 GW de solaire, ça démarre à zéro à 6 heures du matin, culmine à 60 GW à midi, et redescend à zéro à 21 heures… Il faut un réseau pilotable qui fasse ce yoyo en sens inverse…
Le nucléaire n’en n’est pas capable, du moins sans risques, sans surcoûts et sans raccourcir la durée de vie des réacteurs. Les grosses centrales à charbon et même les grosses centrales à gaz (à combustion combinée) ont le même problème, lié aux changements de température et de dilatations lors des changements de régime.
On ne peut donc utiliser que des centrales très flexibles. Ce sont généralement des centrales à gaz alimentées en gaz naturel, voire des turbines de type aéronautique. Leur rendement est moins bon et surtout elles ne fonctionnent pas en régime nominal, ce qui dégrade considérablement leur rendement.
En outre, que fait-on si le soleil d’août donne 60 GW avec une charge de consommation de 50 GW ?
Pour l’éolien, c’est un peu la même chose, avec des fluctuations différentes, aléatoires : le vent souffle par rafale, les variations en local peuvent être très rapides… Le réseau peu les encaisser dans une certaine mesure… si on a des grosses centrales pilotable dessus, comme on le verra ci-dessous. Mais il y a des limites.
C’est ce qui explique l’engouement des fournisseurs de gaz pour les énergies intermittentes…
D’autres contraintes peu connues car plus techniques
La source finale de l’électricité produite par les éoliennes et les panneaux solaires est constituée de convertisseurs électroniques. Ils n’ont pas d’inertie, comme les gros groupes turbo-alternateurs. Or, cette inertie est indispensable pour absorber, justement, les fluctuations rapides du réseau. Pour pallier ce défaut, il faut ajouter des dispositifs coûteux : batteries, condensateurs, le tout piloté (encore) par de l’électronique. Notons d’ailleurs que ces coûts ne sont pas supportés par les ENR !
Les équipements utilisateurs de l’électricité ont besoin d’une énergie productive mais aussi d’une composante non-productive (appelée énergie réactive). Seules les centrales à turbo-alternateurs peuvent la fournir. Là encore, on peut la fabriquer électroniquement mais au prix de gros investissements.
Ces deux problèmes sont cruciaux. À tel point que certains opérateurs d’ENR intermittentes suggèrent de faire tourner les grosses centrales à vide juste pour pallier ces défauts !
Et la suite ?
On pourrait résumer tout ceci en renversant la problématique : les ENR ne viendront pas au secours des centrales classiques, ce sont les centrales classiques qui viennent au secours des ENR.
Mais comme la réalité de la guerre en Ukraine s’impose pour redorer le blason du nucléaire, les réalités technico-économiques s’imposeront un jour pour valider les réflexions ci-dessus. D’ici là, beaucoup de dégâts auront été faits. On aura sans doute aussi construit de nouvelles centrales à gaz pour attendre le nouveau nucléaire.
L’Allemagne a déjà ces problèmes, avec 130 GW d’ENR intermittentes. Elle les « dilue » sur l’ensemble de ses voisins pour l’instant. Mais si tout le monde fait comme elle ?